
P U B L I S H I N G

community experience dist i l led

Liferay User Interface Development

Jonas X. Yuan

Xinsheng Chen

Frank Yu

Chapter No. 5

"Advanced Theme"

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.5 "Advanced Theme"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Dr. Jonas X. Yuan is an expert on Liferay Portal and Content Management Systems

(CMS). As an open source community contributor, he had published three Liferay books

from 2008 to 2010. He is also an expert on Liferay integration with Ad Server OpenX,

different search engines, enterprise contents including videos, audios, images, documents,

and web contents, and other technologies such as BPM Intalio and Business Intelligence

Pentaho, LDAP, and SSO. He holds a Ph.D. in Computer Science from the University of

Zurich, where he focused on Integrity Control in Federated Database Systems. He earned

his M.S. and B.S. degrees from China, where he conducted research on expert systems

for predicting landslides. Previously, he has worked as a Project Manager and a

Technical Architect in Web GIS (Geographic Information System). He is experienced in

Systems Development Lifecycle (SDLC) and has deep, hands on skills in J2EE

technologies. He has developed a BPEL (Business Process Execution Language) Engine

called BPELPower from scratch in NASA data center. As the chief architect, Dr. Yuan

led and successfully launched several large scale Liferay/Alfresco projects which are

used by millions of users each month.

He has worked on the following books: Liferay Portal Enterprise Intranets, 2008,

ISBN 13: 978-1-847192-72-1; Liferay Portal 5.2 Systems Development, 2009,

ISBN 13: 978-1-847194-70-1; and Liferay Portal 6 Enterprise Intranets, 2010,

ISBN 13: 978-1-849510-38-7.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

I would like to thank all my team members at Liferay, specially

Raymond Auge, Brian Chan, Bryan Cheung, Jorge Ferrer, Michael

Young, Jerry Niu, Ed Shin, Craig Kaneko, Brian Kim, Bruno Farache,

Thiago Moreira, Amos Fong, Scott Lee, David Truong, Alexander

Chow, Mika Koivisto, Julio Camarero, Douglas Wong, Ryan Park,

Eric Min, John Langkusch, Marco Abamonga, Ryan Park, Eric Min,

John Langkusch, Marco Abamonga, Michael Han, Samuel Kong, Nate

Cavanaugh, Arcko Duan, Richard Sezov, Joshua Asbury, Shuyang

Zhou, and Juan Fernández for providing all the support and valuable

information. Much thanks to all the friends in the Liferay community.

I sincerely thank and appreciate Leena Purkait and Hyacintha D'Souza,

Project Coordinator and Development Editor respectively, at Packt

Publishing, for criticizing and fixing my writing style. Thanks to Priya

Mukherji and the entire team at Packt Publishing; it was really joyful

to work with them.

Last but not least, I would like to thank my parents and my wife,

Linda, for their love, understanding and encouragement. My special

thanks to my wonderful and understanding kid Joshua.

Xinsheng Chen is an architect for Liferay portal projects, a computer game developer,

and a software testing engineer. He holds an MS degree in Computer Science from

California State University, San Bernardino. His focus was on online banking

applications. He also has a bachelor's degree from Wuhan University, China. Mr. Chen

was a QA engineer at VMware, Inc. He later led a team in developing four educational

computer games for the Escambia County School District, Florida. He worked on

Geographical Information Systems (GIS). Mr. Chen has rich experience in J2EE

technologies. He has extensive experience in content management systems (CMS),

including Alfreso. He is an expert in web portal technologies. Mr. Chen has hands-on

experience in eight Liferay portal projects.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

I would sincerely thank Leena Purkait, the Project Coordinator and

Hyacintha D'Souza, the Development Editor at Packt Publishing.

Thank you for reviewing my chapters. I appreciate your invaluable

advice; it has helped me improve the quality of my writing. Also, I

want to thank Priya Mukherji, Eleanor Duffy, and the team at Packt

Publishing. It has been a happy experience working together with you!

I would also thank Dr. Jonas X. Yuan and Frank Yu for their friendship

and encouragement along the way.

Frank Yu is a senior architect with 10 years of portal experience and co-founder of

ForgeLife LLC, a San Francisco-based firm specializing in Liferay and CMS consulting

and custom development. He manages multiple onshore and offshore teams to build

portal and CMS applications. His team leadership, technical know-how, detail-oriented

attitude, and result-driven approaches are highly valued by his clients.

Frank has extensive software engineering experience in Vignette-based and Liferay-

based portal design, development, architecture, and project management, particularly in

healthcare portal application development. He has hands-on experience of Liferay

training, JSR 168, and JSR 286 portlets, portal themes and skins, the customization of

portal frameworks, CMS, architecture, performance tuning, the administration of dozens

of Amazon Elastic Compute Cloud (EC2) instances, and so on. He also has broad

knowledge of system integration with multiple backends and major RDBMS and Java

application servers. Previously, he worked on different portal products or applications at

CIGNEX, InterComponentWare, Pay By Touch, and McKesson, a Fortune-14 healthcare

company. Frank holds an M.S. degree in Computer & Information Sciences. He received

his B.S. degree from Nanjing University, China.

I thank my co-authors, each of whom played a valuable role in

ensuring that we were able to achieve coverage of a wide range of

Liferay user interface feature set. It has been a great pleasure working

with them.

I greatly appreciate the help from Milen Dyankov for reviewing my

chapters. Thanks to Leena Purkait and Hyacintha D'Souza, the

Production Coordinator and Development Editor respectively, at

PACKT Publishing, for criticizing and editing my writing. Thanks also

to Priya Mukherji and the entire team at PACKT Publishing.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

I'm grateful for the many colleagues who have helped me over the

years in different areas. Particularly, I would like to thank Alok

Mathur, the CTO at Medicity, who hired me and introduced me to the

portal technologies at McKesson in 2000.

I also thank my clients, my partners, and my team members across

U.S. and China. It is they who make my projects successful and

enjoyable. I thank the entire Liferay community, without them neither

the project nor this book would be what it is today.

Last but not least, I would like to thank my wife, Yuting, for her

continuing love and support, and for understanding that there is no

separation between working time and spare time in the Liferay

consulting world. My special thanks to my two wonderful daughters

Marissa and Selina, who make me a proud father every single day.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Liferay User Interface Development
Liferay employs a specialized theming system, which allows you to change the look and

feel of the user interfaces. As a developer, by using the right tools to create and

manipulate themes with Liferay Portal, you can get your site to look any way you want it

to. However, the Liferay theming system can be difficult to get started with. This

practical guide provides you with a well organized manual for working with Liferay.

Liferay User Interface Development is a pioneer in explaining Liferay's powerful theming

system by leading you through examples to get you to create your own themes as quickly

as possible. It focuses on how portal pages are created and styled and also discusses some

simple configuration and customization to change the look and feel of a portal page. Its

explicit instructions are accompanied by plenty of source code. With the open source

nature of Liferay, you will find a user-friendly environment to design themes with the

latest user interface technologies.

Liferay User Interface Development unlocks the potential of using Liferay as a

framework to develop a rich user interface.

The book starts off with how you should go about structuring a Liferay Portal web page.

It identifies the components of a portal page: theme, layout, and portlets. This hands-on

tutorial explains themes, portlets, and Alloy UI, which is the latest output from the Alloy

Project of Liferay, in an easy-to-understand way. It covers all aspects of a theme from its

inception and rendering through its consumption by an end user, with in-depth

discussion.

By the end of this book, you will clearly understand themes, layouts, and the Alloy API.

Most importantly you will obtain the skills to write a theme and layout templates, apply

them to a portal, and also control the portlet UI through different mechanisms.

This clear, concise, and practical tutorial will ensure that you have developed skills to

become a competent Liferay themer. The detailed text is accompanied with source code

that allows you to play with the examples, update the code, and add custom features.

A practical guide to customizing the look and feel of Liferay-based portal applications

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

What This Book Covers
Chapter 1, Customizing your Liferay Portal, discussed Liferay architecture and

framework, different kinds of plugins, and related development strategies.

Chapter 2, Basic Theme Development, addressed basic theme development, page

structure, Plugins SDK, Liferay IDE, and so on. It also covered how to update each

individual file in the subfolder, including CSS, images, JavaScript, and templates, and

how to package, deploy, and test the themes.

Chapter 3, Layout Templates, addressed layout templates in detail. It introduced the basic

concepts of Liferay Portal layout template, and how the theme, layout, and portlets work

together to generate a portal page, how to create your own layout template, and page

rendering code flow, and so on.

Chapter 4, Styling Pages, gave you specific and detailed answers on how to style your

pages. It reviewed some Liferay terminologies, how to set up an organization, UI and

usability features in Liferay Portal 6, internationalization (i18n) and localization (L10n)

at different levels, UI customization of portal page, portlets, how to Add Application pop-

up panel, use the Control Panel, and so on.

Chapter 5, Advanced Theme, provided details about what can be done for advanced

themes. It covered how to change the value of the theme.parent property for theme

creation, and addressed how to add color schemes, how to use Configurable settings in a

theme and pre-defined theme settings, how to embed portlets in a theme, and other topics

like theme upgrade, creating a FreeMarker-template theme, browser compatibility,

Liferay IDE, and other development tools.

Chapter 6, Portlet User Interface, focused on how to customize portlet user interface. Of

course, velocity templates will be useful. This chapter addressed multiple portlets

support, portlet deployment, portlet and Layout, portlet content and portlet template,

portlet chrome customization, Normal view and maximized view of a portlet, AJAX for

portlet UI, Portable Document Format (PDF) reports and Excel reports, Vaadin portlets,

common tags in portlets, portlet UI customization using hook.

Chapter 7, Velocity Templates, walked through velocity templates with you. This chapter

introduced velocity template language, Velocity template, Velocimacro Velocity portlet,

Five basic Velocity templates for a theme, Velocity templates and site performance,

theme customization through Velocity templates, Velocity template for Web Content

portlet, and freeMarker template.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 8, Alloy User Interface, focused on what's Alloy UI and how to use it. This

chapter addressed the story of Alloy UI, What Alloy UI consists of, what Liferay wants

to achieve with Alloy UI, Alloy form tags, node and nodelist, Ajax in Alloy UI, Alloy

Plugin Widgets, and other Alloy UI features.

Chapter 9, UI Taglib gave specific details about UI tag libraries—what are they and how

to use them in customization. Particularly, this chapter addressed important UI taglib,

such as asset tag and categories, search container, custom attributes, tab, toggle, calendar,

breadcrumb, navigation, panel, social activity, social bookmarks, discussion, ratings, diff,

flags, icon, input, and many other useful UI tags.

Chapter 10, User Interface in Production, showed us how to use jQuery UI, Workflow

capabilities, custom attributes capabilities in plugins; how to leverage friendly URL

routing and mapping; how to use social UI, such as Open Social, Social Activities, and

Social Equity; and how to add CAPTCHA or reCAPTCHA, to hook portal core UI and to

deploy themes in production.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme
A typical portal page consists of a theme, a layout template, and one or more
portlets. In Chapter 2, Basic Theme Development, we covered the basic concepts
in themes and how to create a simple theme. In Chapter 3, Layout Templates, we
covered the concepts in layout templates and how to create your own layouts. In
Chapter 4, Styling Pages, we discussed the page styling and some User Interface (UI)
customization at different levels.

In this chapter, we will explore some aspects of a theme in depth and elaborate on
the following theme topics:

Changing the value of the theme.parent property for theme creation
Adding color schemes
Confi gurable settings in a theme
Pre-defi ned theme settings
Embedding portlets in a theme
Theme upgrade
Creating a FreeMarker-template theme
Brower compatibility
Liferay IDE and other development tools

We will have some lab activities of adding color schemes to a theme and upgrading
a theme to Liferay Portal 6.

•

•

•

•

•

•

•

•

•

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[132]

Changing theme.parent property
in theme
Liferay provides four different theme implementations out-of-box in the
${PORTAL_ROOT_HOME}/html/themes/ folder as shown in the following screenshot:

W hen you create a new theme in t he themes/ directory of the Plugins SDK,
the Ant script will copy some fi les to the new theme from one of these three
folders, _styled/, _unstyled/, and classic/, which can be specifi ed in the
${PLUGINS_SDK_HOME}/themes/build-common-theme.xml fi le.

For example, you can go to the ${PLUGINS_SDK_HOME}/themes/ directory and
run create.bat palmtree "Palm-Tree Publications theme" on Windows
or ./create.sh palmtree "Palm-Tree Publications theme" on Linux,
respectively. Or you can use Liferay IDE to create same New Liferay Theme
Plugin Project. This will create a theme folder named palmtree-theme in the
Liferay Plugins SDK environment. When you run ant to build and deploy the
theme and then apply the newly created theme to your page, you will fi nd out that
the look and feel of the page is messed up, as shown in the following screenshot:

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[133]

If you are familiar with theme development in Liferay Portal 5.2, you may wonder
what has happened to the theme created in Liferay Portal 6 Plugins SDK because you
would expect a fully working theme with two simple commands, create and ant.
This is because the following build.xml fi le in your theme specifi es _styled as the
value for the theme.parent property:

<?xml version="1.0"?>
<project name="palmtree-theme" basedir="." default="deploy">
 <import file="../build-common-theme.xml" />
 <property name="theme.parent" value="_styled" />
</project>

Th is means that when your newly created theme is built, it will copy all the fi les from
the _styled/ folder in the ${PORTAL_ROOT_HOME}/html/themes/ directory to the
docroot/ folder of your theme. The default _styled/ folder does not have enough
fi les to create a completely working theme and that is why you see a messed-up page
when the theme is applied to a page. The reason why this default _styled/ folder
does not include enough fi les is that some Liferay users prefer to have minimal set of
fi les to start with.

You can modify the build.xml fi le f or your theme in the ${PLUGINS_SDK_HOME}/
themes/palmtree-theme/ folder by changing value of the theme.parent property
from _styled to classic, if you prefer to use the Classic theme as the basis for your
theme modifi cation.

<property name="theme.parent" value="classic" />

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[134]

Now you will see that your page looks exactly the same as that with the Classic theme
after you build and apply your theme to the page (refer to the following screenshot):

Adding color schemes to a theme
Whe n you create a theme in the Plugins SDK environment, the newly created
theme by default supports one implementation and does not automatically have
color schemes as variations of the theme. This fi ts well if you would like to have a
consistent look and feel, especially in terms of the color display, across all the pages
that the theme is applied to.

In your portal application, you might have different sites with slightly different look
and feel for different groups of users such as physicians and patients. You might
also need to display different pages such as public pages with one set of colors and
the private pages with a different set of colors. However, you don't want to create
several different themes for reasons such as easy maintenance. In this case, you
might consider creating different color schemes in your theme.

Color schemes are specifi ed using a Cascading Style Sheets (CSS) class name,
with which you are able to not only change the colors, but also choose different
background images, border colors, and so on.

In the previous section, we created a PalmTree Publication theme, which takes the
Classic theme as its parent theme. Now we can follow the mentioned steps to add
color schemes to this theme:

1. Copy the ${PORTAL_ROOT_HOME}/webapps/palmtree-theme/WEB-INF/
liferay-look-and-feel.xml fi le to the ${PLUGINS_SDK_HOME}/themes/
palmtree-theme/docroot/WEB-INF/ folder.

2. Open the ${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/WEB-
INF/liferay-look-and-feel.xml fi le in your text editor.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[135]

3. Change <theme id="palmtree" name="PalmTree Publication Theme"
/> as shown in the highlighted lines here, and save the change:
<look-and-feel>
 <compatibility>
 <version>6.0.5+</version>
 </compatibility>
 <theme id="palmtree" name="Palm Tree Publications Theme">
 <color-scheme id="01" name="Blue">
 <css-class>blue</css-class>
 <color-scheme-images-path>${images-path}/color_schemes/
blue</color-scheme-images-path>
 </color-scheme>
 <color-scheme id="02" name="Green">
 <css-class>green</css-class>
 </color-scheme>
 <color-scheme id="03" name="Orange">
 <css-class>orange</css-class>
 </color-scheme>
 </theme>
</look-and-feel>

4. Go to the ${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/
palmtree-theme/_diffs/ folder and create a css/ subfolder.

5. Copy both custom.css and custom_common.css from the ${PORTAL_ROOT_
HOME}/html/themes/classic/_diffs/css/ folder to the ${PLUGINS_SDK_
HOME}/themes/palmtree-theme/docroot/_diffs/css/ folder. This is to
let the default styling handle the fi rst color scheme blue.

6. Create a color_schemes/ folder under the ${PLUGINS_SDK_HOME}/themes/
palmtree-theme/docroot/palmtree-theme/_diffs/css/ folder.

7. Place one .css fi le for each of your additional color schemes. In this case, we
are going to create two additional color schemes: green and orange.

8. To make the explanation simpler, copy both the green.css and orange.css
fi les from the ${PORTAL_ROOT_HOME}/html/themes/classic/_diffs/css/
color_schemes/ folder to the ${PLUGINS_SDK_HOME}/themes/palmtree-
theme/docroot/_diffs/css/color_schemes/ folder.

9. Cop y all images from the ${PORTAL_ROOT_HOME}/html/themes/classic/_
diffs/images/ folder to the ${PLUGINS_SDK_HOME}/themes/palmtree-
theme/docroot/_diffs/images/ folder.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[136]

10. Add the following lines in your ${PLUGINS_SDK_HOME}/themes/palmtree-
theme/docroot/_diffs/css/custom.css fi le:
@import url(color_schemes/green.css);
@import url(color_schemes/orange.css);

If you open either the green.css or the orange.css fi le, you will be able to
identify the styling for the CSS by using a color prefi x for each CSS defi nition.
For example, in the orange.css fi le you would fi nd that each item is defi ned
like this:
orange .dockbar {
 background-color: #AFA798;
 background-image: url(../../images/color_schemes/orange/dockbar/
dockbar_bg.png);
}
.orange .dockbar .menu-button-active {
 background-color: #DBAC5C;
 background-image: url(../../images/color_schemes/orange/dockbar/
button_active_bg.png);
}

In the green.css fi le, the style is defi ned like this:
green .dockbar {
 background-color: #A2AF98;
 background-image: url(../../images/color_schemes/green/dockbar/
dockbar_bg.png);
}
.green .dockbar .menu-button-active {
 background-color: #95DB5C;
 background-image: url(../../images/color_schemes/green/dockbar/
button_active_bg.png);
}

Als o, notice that the related images used for the different color schemes
are included in the ${PLUGINS_SDK_HOME}/themes/palmtree-theme/
docroot/_diffs/images/color_schemes/ folder.

11. Re-build and deploy the PalmTree Publication theme.
12. Log in as administrator and go to the Control Panel to apply this theme to

the PalmTree Publications Inc. organization. You will be able to see three
color schemes available under this theme.

13. Select any of them to apply it to the Public Pages.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[137]

14. Take a screenshot of the page when each of the color schemes is applied and
save it as thumbnail.png in the corresponding blue, green, and orange
subfolders in the ${PLUGINS_SDK_HOME}/themes/palmtree-theme/
docroot/_diffs/images/color_scheme/ folder. Three screenshots are used
to distinguish between the three color schemes in the Control Panel as seen
in the following screenshot:

The following screenshots shows how each of the three color schemes looks when
applied to a portal page:

As shown in above screenshot, color scheme blue has been applied on the Home
page, by default. The following screenshot shows applying color scheme green on
the current page. Of course, you would be able to apply color schemes blue or green
in the entire site, if required.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[138]

Similar to color schemes blue and green, you can apply color scheme orange as well
on the current page or the entire site, as shown in following screenshot:

So it w orks! The page background is with a hue of gray color. Now, what if we want
to change the page background color to red for the green color schema?
Update the ${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/_diffs/
css/color_schemes/green.css fi le as follows. The commented outline is the
original content. The next line after the comment is the new content. The #FF0000
code is for the red color.

body.green, .green .portlet {
 /*background-color: #F1F3EF;*/
 background-color: #FF0000;
}

Re-depl oy the PalmTree theme and refresh the portal page that uses the green color
scheme. Now, you should be able to see the portal page with a red background color.

As you can see, you can use theme color schemes to create some variants of the same
theme without creating multiple themes. This is useful when you have different but
related user roles such as physicians, nurses, and patients and you need to build a
different site for each of them. You can use the color schemes to display each of these
sites in a slightly different look and feel.

Configurable theme settings
There a re many use cases where you would like to change some default settings in
the theme so that you can modify the values after the theme is built and deployed.
Fortunately, each theme can defi ne a set of settings to make this confi gurable. The
settings are defi ned as key-value pairs in the liferay-look-and-feel.xml fi le of
the theme with the following syntax:

<settings>
 <setting key="my-setting1" value="my-value1" />
 <setting key="my-setting2" value="my-value2" />
</settings>

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[139]

These settings can then be accessed in the theme templates using the following code:
$theme.getSetting("my-setting1")
$theme.getSetting("my-setting2")

For exa mple, I need to create two themes—PalmTree Publications theme and
AppleTree Publica tions theme. They are exactly the same except for some differences
in the footer content that includes copyright, terms of use, privacy policy, and so
on. Instead of creating two themes packaged as separate .war fi les, we create one
set of two themes that share the majority of the code including CSS, JavaScript,
images, and most templates; but with one confi gurable setting and two different
implementations of the footer Velocity fi les.
Here is how this can be done:

1. Open ${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/WEB-INF/
liferay-look-and-feel.xml in the above sample PalmTree theme.

2. Copy the PalmTree theme section and paste it in the same fi le but after
this section.

3. Rename the values of id and name from palmtree and PalmTree
Publications theme to appletree and AppleTree Publications theme
in the second section.

4. Add the following setting to the palmtree section before the
color-scheme defi nition:
<settings>
 <setting key="theme-id" value="palmtree" />
</settings>

5. Add the following setting to the appletree section before the
color-scheme defi nition:
<settings>
 <setting key="theme-id" value="appletree" />
</settings>

6. Find th e ${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/WEB-
INF/liferay-look-and-feel.xml fi le as follows:
<look-and-feel>
 // ignore details
 <theme id="palmtree" name="PalmTree Publications Theme">
 <settings>
 <setting key="theme-id" value="palmtree" />
 </settings>
 <color-scheme id="01" name="Blue">
 // ignore details
 </color-scheme>

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[140]

 </theme>
 <theme id="appletree" name="AppleTree Publications Theme">
 <settings>
 <setting key="theme-id" value="appletree" />
 </settings>
 <color-scheme id="01" name="Blue">
 // ignore details
 </color-scheme>
 </theme>
</look-and-feel>

7. Copy the portal_normal.vm fi le of the Classic theme from the ${PORTAL_
ROOT_HOME}/html/themes/classic/_diffs/templates/ folder to the
${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/_diffs/
templates/ folder.

8. Open the ${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/_
diffs/templates/portal_normal.vm file

9. Replace the default footer section with the following code:
#set ($theme_id = $theme.getSetting("theme-id"))
#if ($theme_id == "palmtree")
 #parse ("$full_templates_path/footer_palmtree.vm")
#else
 #parse ("$full_templates_path/footer_appletree.vm")
#end

10. Create your own version of the two footer Velocity templates in the
${PLUGINS_SDK_HOME}/themes/palmtree-theme/docroot/_diffs/
templates/ folder.

11. Add related CSS defi nitions for your footer in your custom.css fi le.
12. Build and deploy the theme .war fi le.

Now you should be able to see both the PalmTree and AppleTree themes when you
go to the Control Panel to apply either theme to your page.

Based on the theme to be used, you should also notice that your footer is different.

Of course, we can take other approaches to implement a different footer in the
theme. For example, you can dynamically get the organization or community name
and render the footer differently. However, the approach we explained previously
can be expanded to control the UI of the other theme components such as the header,
navigation, and portlets.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[141]

Portal predefined settings in theme
In the previous section, we discussed that theme engineers can add confi gurable
custom settings in the liferay-look-and-feel.xml fi le of a t heme. Liferay portal
can also include some predefi ned out-of-the-box settings such as portlet-setup-
show-borders-default and bu llet-style-options in a t heme to control certain
default behavior of the theme.

Let us use portlet-setup-show-borders-default as an example to explain how
Liferay portal controls the display of the portlet border at different levels.

If this predefi ned setting is set to false in your theme, Liferay portal will turn off
the borders for all portlets on all pages where this theme is applied to.

<settings>
 <setting key="portlet-setup-show-borders-default" value="false" />
</settings>

By default, the value is set to true, which means that all portlets will display the
portlet border by default.

If the predefi ned portlet-setup-show-borders-default setting is set to true, it
can be overwritten for individual portlets using the liferay-portlet.xml fi le of
a p ortlet as follows:

<liferay-portlet-app>
 // ignore details
 <portlet>
 <portlet-name>sample</portlet-name>
 <icon>/icon.png</icon>
 <use-default-template>false</use-default-template>
 <instanceable>true</instanceable>
 <header-portlet-css>/css/main.css</header-portlet-css>
 <footer-portlet-javascript>/js/main.js</footer-portlet-javascript>
 <css-class-wrapper>sample-portlet</css-class-wrapper>
 </portlet>
// ignore details
</liferay-portlet-app>

Set the use-default-template value to true if the portlet uses the default template
to decorate and wrap content. Setting it to false will allow the developer to
maintain the entire output content of the portlet. The default value is true. The most
common use of this is when you want the portlet to look different from the other
portlets or if you want the portlet not to have borders around the output content.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[142]

The use-default-template setting of eac h portlet, after being set to either true or
false, in the liferay-portlet.xml fi le, can be further overwritten by the portlet's
popup CSS setting. Users with the appropriate permissions can change it by going to
the Look and Feel | Portlet Confi guration | Show Borders checkbo x of the portlet,
as shown in the next screenshot:

Embedding non-instanceable portlets
in theme
One comm on requirement in theme development is to add some portlets in different
components of a theme.

For example, you might want to add the Sign In portlet in the header of your theme,
the Web Content Search portlet in the navigation area, and the Site Map portlet
in the footer area. All the Liferay out-of-the-box portlets can be referred in the
${PORTAL_ROOT_HOME}/WEB-INF/liferay-portlet.xml fi le.

How can this be achieved?

Well, it can be quite easy or pretty tricky to embed an out-of-the-box portlet in a theme.

Embedding Dockbar and Breadcrumb portlets
in a theme
As expla ined in Chapter 4, Styling Pages, the Dockbar portlet is embedded at the very
top in the default Classic theme in the portal_normal.vm fi le as shown next:

#if($is_signed_in)
 #dockbar()
#end

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[143]

In the s ame way, the Breadcrumb portlet can be embedded in the content area of the
Classic theme in the portal_normal.vm fi le:

#breadcrumbs()

Embedding Language and Web Content
Search portlets in a theme
Some oth er Liferay out-of-the-box portlets such as the Language and Web Content
Search portlets can be embedded in a theme or a layout template easily.

For example, the Web Content Search portlet can be added to the far right side of
the horizontal navigation area of your theme as follows in the navigation.vm fi le
of your theme.

<div id="navbar">
 <div id="navigation" class="sort-pages modify-pages">
 <div id="custom">
 $theme.journalContentSearch()
 </div>
 // ignore details
 </div>
</div>

 In the same way, the Language portlet can be embedded in the portal_normal.vm
Velocity template fi le of your theme:

$theme.language()

Again, you need to add the necessary CSS defi nitions in your custom.css fi le to
control the look and feel and the location of your embedded portlet(s).

Embedding Sign In portlet in the header area
of a theme
 Sometimes the theme design requires that the Liferay Sign In portlet be in the header
area. By default, the Sign In portlet has a portlet border but we need to disable it.
The previously mentioned approaches for embedding a portlet in a theme through
Velocity attributes in a template do not work in this case because we need to
customize the default UI of the embedded portlet.

Instead, we can add the following code to the header section in the
portal_normal.vm fi le in our sample PalmTree theme:

#if(!$is_signed_in)
 #set ($locPortletId = "58")

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[144]

 $velocityPortletPreferences.setValue("portlet-setup-show-borders",
"false")
 #set($locRenderedPortletContent = $theme.runtime($locPortletId, "",
$velocityPortletPreferences.toString()))
 $locRenderedPortletContent
 $velocityPortletPreferences.reset()
#end

 After the theme is re-built and re-deployed, we can see that the Sign In portlet is
rendered in the header area underneath the logo without the portlet border.

T he next step for us is to modify the custom.css fi le and the related fi les by
adding CSS defi nition to control the location and look and feel of this Sign In portlet.
The following screenshot shows the Sign In portlet in the header area and the
Web Content Search portlet in the navigation area in a working theme in the
production environment:

Embedding instanceable portlets in theme
Al l these embedded portlets are non-instanceable as defi ned in the
liferay-portlet.xml fi le. A n on-instanceable portlet has only one instance on a
portal page and therefore, its portlet ID is static. For instanceable portlets such as
the Web Content Display portlet, the portlet ID is generated when an instance of the
portlet is created, and therefore, can be unknown when the theme is created. This
makes it more diffi cult to embed such portlets in a theme.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[145]

Custom portlets can also be embedded in a theme.

The fi rst thing you need to know is the porlet ID. This can be found out by following
these steps:

1 . Create a custom portlet to be embedded.
2. Build and deploy the portlet.
3. Log in as portal administrator.
4. Add the portlet on a page.
5. Click on Confi guration | Sharing | Any Website.

Th e portlet ID is shown in the JavaScript URL, as displayed in the following screenshot.
In this case, the portlet ID is sample_WAR_sampleportlet_INSTANCE_WI4g.

Now you can embed this portlet in a theme by adding the following code in your
theme Velocity template fi le:

$theme.runtime("sample_WAR_sampleportlet_INSTANCE_WI4g")

Ple ase note that the above $theme.runtime(portlet.id) call creates a new
portlet on the current page. As a result, it actually creates a new record in the
Liferay database table. Each portlet on each page has its own portlet preference,
and therefore, you would have to reset its preference when a new page with an
embedded portlet in a theme is created. For more details about embedding portlets
with portlet preferences, please refer to the forum post at http://www.liferay.
com/community/forums/-/message_boards/message/772138.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[146]

Adding runtime portlets to a layout
Sim ilar to adding a runtime portlet to a theme, you can add a runtime
portlet to a layout in your custom layout template. For example, you can
use the following code to add the Web Content Search portlet, which
has a portlet ID of 77, to the third column in the second row of the 1_3_
columns.tpl of your custom layout template:

<div class="columns-3" id="content-wrapper">
 <table class="lfr-grid" id="layout-grid">
 <tr>
 <td class="lfr-column" colspan="3" id="column-1"
valign="top">
 $processor.processColumn("column-1")
 </td>
 </tr>
 <tr id="column-center">
 <td class="lfr-column thirty" id="column-2"
valign="top">
 $processor.processColumn("column-2")
 </td>
 <td class="lfr-column thirty" id="column-3"
valign="top">
 $processor.processColumn("column-3")
 </td>
 <td class="lfr-column thirty" id="column-4"
valign="top">
 $processor.processPortlet("77")
 $processor.processColumn("column-4")
 </td>
 </tr>
 </table>

</div>

The Web Content Search portlet will always be displayed on any page
where the above custom layout template is used. The portlet can be
confi gured, minimized or maximized but can't be removed from the page.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[147]

Theme upgrade
A c ommon Liferay Portal project is to upgrade a portal application from an
older version of Liferay Portal to Liferay Portal 6. The upgrade process typically
includes the following steps:

Installation of Liferay Portal 6
Database upgrade
Theme upgrade
Content repository upgrade
Portlet upgrade
Upgrading the custom code, such as that in the Ext environment, in the
previous version to the Ext plugin in Liferay Portal 6

In this section, we will focus on the theme upgrade process. The upgrading of the
other components will be discussed in the later chapters.

Here, we will use the Natural Essence theme as an example and walk through
the upgrading process of it, from Liferay 5.2 to 6. The source code of this theme is
downloadable on the Community Plugins page on the Liferay site.

Let us fi rst build the theme in the Plugins SDK of Liferay 5.2 and generate
the natural-essence-theme-5.2.0.1.war fi le and then deploy it to
liferay-portal-tomcat-6.0-5.2.0. Here is how it looks:

•

•

•

•

•

•

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[148]

Now we are going to take the following steps to upgrade it to Liferay Portal 6, but
we will keep the original look and feel:

1. Download natural-essence-theme-5.2.0.1.zip from http://www.
liferay.com/downloads/liferay-portal/community-plugins/.

2. In the ${PLUGINS_SDK_HOME}/themes/ directory, run the following
command to create a theme named Natural Essence in the Plugins
SDK environment:
create.bat natural-essence "Natural Essence theme"

3. Copy the css/, images/, js/, and templates/ folders of the Classic theme
from the ${PORTAL_ROOT_HOME}/html/themes/classic/ folder to the
${PLUGINS_SDK_HOME}/themes/natural-essence-theme/docroot/_
diffs/ folder.

4. Build and deploy it to Liferay Portal 6. You will get a Natural Essence theme
with the same look and feel as the Liferay Classic theme. We will start the
upgrade process from here.

5. Noti ce that the Natural Essence theme 5.2.0.1 is unique in body, wrapper,
banner, and navigation backgrounds. So we will start the code update in
these four parts fi rst. Copy the natural-essence-theme-5.2.0.1/images/
custom/ folder, which contains three image fi les, to the ${PLUGINS_SDK_
HOME}/themes/natural-essence-theme/docroot/_diffs/images/
directory. This folder contains custom images for the Natural Essence theme.

6. Comp are the natural-essence-theme-5.2.0.1/css/custom.css fi le with
the ${PLUGINS_SDK_HOME}/themes/natural-essence-theme/docroot/_
diffs/css/custom.css fi le. Copy the related content in the former custom.
css fi le to the latter custom.css fi le. Update the latter custom.css fi le as
follows. The commented out code is the original code:
body {
 /*background: #EEF0F2;
 font-size: 11px;*/
 background: #7C6F5C url(../images/custom/body_bg.jpg);
 color: #222;
 padding: 33px 0;
}
#wrapper {
 /*background: none;
 margin: 0 auto;
 max-width: 90%;
 min-width: 960px;
 position: relative;*/
 background: #FFF;

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[149]

 border: 6px solid #332;
 border-top: 6px solid #332;
 margin: 0 auto;
 width: 960px;
}
#banner {
 /*background: none;
 height: auto;*/
 background: #DAD7C5 url(../images/custom/banner_bg.jpg) no-
repeat scroll left bottom;
 padding: 0 0 220px;
 position: relative;
}
#navigation {
 /*background: #414445 url(../images/navigation/bg.png) repeat-x
0 0;
 clear: both;
 margin: 0 auto 5px;
 min-height: 2.2em;
 padding: 0 5px;*/
 background: #EAE7DF url(../images/custom/navigation_bg.gif);
 height: 41px;
}

7. Depl oy the updated Natural Essence theme and compare it with the Natural
Essence 5.2.0.1 theme in look and feel.

8. Notice that the Natural Essence 5.2.0.1 theme does not have the breadcrumb
of liferay.com | Nature. Instead of the breadcrumb, there is a navigation
bar. So we remove the breadcrumb and put the navigation bar in its place. In
the ${PLUGINS_SDK_HOME}/themes/natural-essence-theme/docroot/_
diffs/templates/portal_normal.vm fi le, remove the following section:
#if ($has_navigation)
 #parse ("$full_templates_path/navigation.vm")
#end

9. Remove the following section:
<nav class="site-breadcrumbs" id="breadcrumbs">
 <h1>
 #language("breadcrumbs")
 </h1>
 #breadcrumbs()
</nav>

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[150]

10. Instead of the previous snippet of code, add the following code:
#if ($has_navigation)
 #parse ("$full_templates_path/navigation.vm")
#end

11. Build and deploy the theme to see the result.
12. There is a white strip above the LIFERAY logo, which does not look good.

The logo presentation is controlled by the following code in the ${PLUGINS_
SDK_HOME}/themes/natural-essence-theme/docroot/_diffs/
templates/portal_normal.vm fi le:
<header id="banner" role="banner">
 <hgroup id="heading">
 <h1 class="company-title">
 <a class="logo" href="$company_url" title="#language("go-
to") $company_name">
 $company_name

 </h1>
 // ignore details

13. In t he custom.css fi le, fi nd the corresponding style code as follows:
#banner .company-title {
 float: none;
 margin: 15px 0 0;
 position: static;
}

14. Update the previous snippet of code as follows:
#banner .company-title {
 float: none;
 margin: 0 0 0;
 position: static;
}

15. Notice that in the present navigation bar, the page names are in white, which
are not vivid. The page name font color is controlled by the following code in
the ${PLUGINS_SDK_HOME}/themes/natural-essence-theme/docroot/_
diffs/templates/navigation.vm fi le:
<nav class="sort-pages modify-pages" id="navigation">
 <h1>
 #language("navigation")
 </h1>

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[151]

 #foreach ($nav_item in $nav_items)
 #if ($nav_item.isSelected())
 <li class="selected">
 // ignore details

16. The corresponding style code in the custom.css fi le is as follows:
#navigation a {
 color: #FFF;
 font-size: 1.1em;
 font-weight: bold;
 margin: 0 1px;
 padding: 3px 15px;
 text-decoration: none;
}

17. Update the previous snippet of code as follows:
#navigation a {
 color: #000000;
 font-size: 1.1em;
 // ignore details
}

18. We h ave changed the font color into black. Here is how the Natural Essence
theme looks now:

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[152]

This is the Natural Essence theme 6. It looks almost exactly same as the Natural
Essence theme 5.2.0.1.

The upgrade of a theme from an old version to Liferay Portal 6 is straightforward.
The main difference is the introduction of Dockbar portlet, which includes some
of the main administration functionalities in a very compact and short tool bar.
This makes most themes in Liferay Portal 6 much simpler and easier to implement
because all you need to do is focus on the logo, header, navigation, breadcrumb,
portlets, and footer.

Another important part of the theme upgrade is to handle the jQuery library. As
you might have known already, Liferay Portal 6 has introduced Alloy UI, whi ch is
based on HyperText Markup Language 5 (HTML5), Cas cading Style Sheets Level
3 (CSS3), and Yahoo User Interface version 3 (YUI3). Th e widely used jQuery in
Liferay 5.x is not packaged in Liferay Portal 6. However, you might have jQuery in
your custom portlets. In order to support the jQuery functionalities in y our portlets,
you need to package the jQuery library in t he jquery-1.4.4.min.js fi le, which
can be downloaded from the jQuery site at http://code.jquery.com/jquery-
1.4.4.min.js and the hypertext link should be changed to http://code.jquery.
com/jquery-1.4.4.min.js as well, in your own theme. Your custom jQuery
script fi les such as my-custom.js can also be packaged in your upgraded theme.
This can be done by adding the following lines in the portlet_normal.vm fi le in
the ${PLUGINS_SDK_HOME}/themes/{your-custom-theme}/docroot/_diffs/
templates/ folder:

</body>
#js("$javascript_folder/jquery-1.4.4.min.js")
#js("$javascript_folder/my_custom.js")
$theme.include($bottom_include)
</html>

Of course, you also need to add both the mentioned JavaScript fi les in the ${PLUGINS_
SDK_HOME}/themes/{your-custom-theme}/docroot/_diffs/js/ folder.

Creating a FreeMarker template theme
The d efault templates are Velocity templates in t he Liferay themes. This can be
verifi ed by looking at the following highlighted line in the ${PLUGINS_SDK_HOME}/
themes/build-common-theme.xml fi le:

<if>
 <not>
 <isset property="theme.type" />
 </not>

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[153]

 <then>
 <property name="theme.type" value="vm" />
 </then>
</if>

Liferay engineers can now create a theme with FreeMarker templates in Liferay
portal. To create a FreeMarker theme, we need to update the theme type to
FreeMarker. This can be done by following the procedure given next:

1. In the ${liferay.plugins.sdk.home}/themes/ folder, run the
following command:
create.bat|./create.sh] freemarker "FreeMarker Theme"

2. Add a theme.type line in the ${PLUGINS_SDK_HOME}/themes/freemarker-
theme/build.xml fi le as shown next:
<property name="theme.type" value="ftl"></property>
<property name="theme.parent" value="classic"></property>

3. Copy the css, images, js, and templates folders from the ${PORTAL_ROOT_
HOME}/html/themes/classic/ directory to the ${PLUGINS_SDK_HOME}/
themes/freemarker-theme/docroot/_diffs/ folder.

4. Ant-deploy the FreeMarker theme to a running Liferay environment. The
freemarker-theme-{version.number}.war fi le will be deployed.

5. Copy the ${PORTAL_ROOT_HOME}/webapps/freemarker-theme/WEB-INF/
liferay-look-and-feel.xml fi le to the ${PLUGINS_SDK_HOME}/themes/
freemarker-theme/docroot/WEB-INF/ folder.

6. Update the ${PLUGINS_SDK_HOME}/freemarker-theme/docroot/WEB-INF/
liferay-look-and-feel.xml fi le as follows:
<look-and-feel>
 <compatibility>
 <version>6.0.5+</version>
 </compatibility>
 <theme id="freemarker" name="FreeMarker">
 <template-extension>ftl</template-extension>
 </theme>
</look-and-feel>

7. Ant-deploy the FreeMarker theme again.

Now y ou have a Liferay theme that uses FreeMarker templates. Right now, it looks
the same as the original Liferay Classic theme that uses Velocity templates.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[154]

What are the theme variables available in the FreeMarker templates? Just like the
Velocity templates, you have all the theme variables necessary for creation of a
theme in the FreeMarker templates. These variables are defi ned in the com.l iferay.
portal.freemarker.FreeMarkerVariables.java fi le and the ${PORTAL_ROOT_
HOME}/html/themes/_unstyled/init.ftl fi le. Here are some examples:

htmlUtil

la nguageUtil

th emeDisplay

co mpany

us er

la yout

sc opeGroupId

pe rmissionChecker

co lorScheme

us er_id

is _default_user

la nguage

sh ow_control_panel

bo ttom_include

da te

th e_year

Them e coding conventions
One o f the best practices in Liferay theme engineering is to follow some coding
conventions in the theme development. You can save time, avoid pitfalls, and
make your code consistent by following these standards and conventions.

Cascading style sheet conventions
The f ollowing snippet of CSS code is taken from the ${PORTAL_ROOT_HOME}/html/
themes/_styled/css/application.css fi le.

/* ---------- Menus ---------- */

.lfr-actions.portlet-options .lfr-trigger strong span, .visible.
portlet-options .lfr-trigger strong span {
 background-image: url(../images/portlet/options.png);
}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[155]

You can see that the Liferay developers observe the following rules in CSS coding:

Use a comment line to group-related selectors
Put one blank line between the selectors and the comment
Separate multiple selectors with a comma and a newline
Leave one space between the selector name and the starting "{"
Indent the declarations with one tab
Put a space between the property name and its value in the declaration
Leave no space between the URL and the opening "(" for a background
image property
Use a relative URL path instead of an absolute one

Image folder and file conventions
Lifer ay uses a lot of images as part of themes. These images fi les are collectively
put in, say, the ${PORTAL_ROOT_HOME}/html/themes/classic/images/ directory
for the Classic theme. Within this directory, the image fi les are further grouped in
different subfolders. Here are some examples:

add_content: Images fi les for the Add Application functionality
application: Commonly used image fi les for all applications
arrows: All shapes of arrow images
aui: Image fi les used by the newly developed Alloy UI library
blogs: Image fi les used by the blog portlet and web content portlet

Only alphabetical characters (in lowercase) and underscores are allowed in the image
folder names and fi lenames, such as the following:

color_schemes

dockbar

image_gallery/slide_show.png

trees/root.png

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[156]

JavaScript coding conventions
 Liferay has a minifi er fi lter that is used to remove empty lines and extra spaces in the
page markup fi le before the application server sends it to a browser. The purpose of
this minifi er fi lter is to reduce the bytes to be sent and thus improve network speed.

In some Liferay versions this minifi er fi lter removes the comments in the JavaScript
functions, while in other versions it does not. This has impact on the way we code in
JavaScript. Here is an example.

function showMessage()
{
 // comment
 alert("Hello World!");

}

 This function will work without the minifi er fi lter. When the minifi er fi lter is
working, it removes the extra spaces. The function becomes as follows:

function showMessage(){// comment alert("Hello World!");}

Now the browser will complain that the showMessage function is not defi ned. The
lesson here is that we should always use multiline comment signs in JavaScript
coding, as seen in the following snippet of code:

function showMessage()
{
 /* comment */
 alert("Hello World!");

}

In this case, even if the function is minifi ed, it will still work. This is also true for the
functions defi ned in separate JavaScript fi les.

The following code works fi ne without the minifi er fi lter:

function <portlet:namespace />validateprofile(frm)
{
 var re = /^[a-zA-Z\.-\s]+$/;
 if(!re.test(frm.<portlet:namespace />firstName.value)) {
 alert("First name contains invalid characters!");
 return false;
 }
 // ignore details
}

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[157]

After the minifi er fi lter is applied, the previous code becomes as follows:

function <portlet:namespace />validateprofile(frm){ var re = /^[a-zA-
Z\.-\s]+$/; if(!re.test(frm.<portlet:namespace />firstName.value)) { …
} ... }

The browser will complain about an invalid character set (in the regular expression).
It will say that the validateprofile function is not defi ned. To fi x this, we need
to use the RegExp object :

function <portlet:namespace />validateprofile(frm)
{
 var re = new RegExp('^[a-zA-Z- \.]+$');
 if(!re.test(frm.<portlet:namespace />firstName.value)) {
 alert("First name contains invalid characters!");
 return false;
 }
}

It is also advisable to use a good tool for JavaScript code debugging.

Brower compatibility
 Many CSS styles are displayed differently in different browsers. This is because
while major modern browsers support CSS according to the World Wide Web
Consortium (W3C) specifi cations , they implement some CSS rules in different ways.

In order for a custom theme to look the same in different browsers, we need to pay
attention to three aspects in our theme composing—specifying a DOCTYPE, using
CSS reset styles, and limited support of CSS3 in the Internet Explorer 6, 7, and 8.

Specifying a DOCTYPE
 Modern browsers have two rendering modes—standards mode and quirks mode.
In quirks mode , a browser renders pages written for older browsers. The quirks
mode is for backward compatibility. In standards mode , a browser works according
to the W3C specifi cations as closely as possible. The standards mode complies with
W3C standards.

In theme coding, we use the DOCTYPE tag to tell a browser that a theme follows
standards. After this theme is applied to a page, the browser will render this page
according to W3C specifi cations. One example of the DOCTYPE tag is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[158]

This markup is used in the Classic theme in Liferay Portal 5.x. This XHTML 1.0
Transitional DOCTYPE will tell a browser to switch to standards mode for rendering
this page.

The DOCTYPE should be the fi rst tag in the document.

In the portal_normal.vm fi le for the Classic theme in Liferay Portal 6, you will fi nd
the HTML5 DOCTYPE as follows:

<!DOCTYPE html>

Using CSS reset styles
 A page may still look different in two different browsers even when both the
browsers are rendering the page in standards mode. For example, the tag gets
padding in Firefox but a margin in Internet Explorer. To make the tag look the
same in both Firefox and Internet Explorer, we use the following CSS reset style:

* {
 padding: 0;
 margin: 0;
}

 The * is a universal selector. This style resets the padding and margins on all the
elements to zero. Now it does not matter whether the tag has padding or a
margin because both the attributes have the same value—zero. The tag will
look the same in both, Firefox and Internet Explorer.

You will fi nd such styles in a base.css fi le of a Liferay theme. The following is a
snippet of code from that fi le:

/* ---------- Browser normalization ---------- */
body, div, dl, dt, dd, ul, ol, li, h1, h2, h3, h4, h5, h6, pre, form,
fieldset, input, textarea, p, blockquote, th, td {
 margin: 0;
 padding: 0;

}

This solution is called browser normalization in Liferay.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[159]

Limited support of CSS3 in Internet Explorer
6, 7, and 8
 One of the nice features in CSS3 is to use the border-radius property , as seen in
the code snippet that follows, in order to create rounded corners with CSS3 easily,
without the need for corner images or the use of multiple <div> tags. This is perhaps
one of the most talked about aspects of CSS3.

-moz-border-radius: 15px;

This property is supported well in Firefox, Safari, Google Chrome, and IE 9 browsers.
The following screenshot, which was taken in Firefox 3.6, shows how the tabs are
displayed with rounded corners without using corner images:

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[160]

I E 6, 7, and 8 do not suffi ciently support CSS3. Particularly, the previous property
is not supported. Therefore, the same tabs controlled by the same CSS3 code appear
differently (with straight corners) in IE 6, 7 and 8. Refer to the following screenshot
taken in IE 7:

Dealing with browser bugs
Wh en the previous measures still do not work or you have to deal with a browser
bug, you can add browser prefi x to a style to target a specifi c browser issue.

The following code is from the custom.css fi le of the Liferay Classic theme:

.ie6 #wrapper {
 width: 90%;
}

This style is for Internet Explorer 6 only. For a <div> block whose ID is wrapper,
its width is specifi ed as relatively 90%.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[161]

Development tools
As you can see from the portal_normal.vm fi le, the rendering of a theme is the
rendering of a whole web page. Any tool suitable for web application development
may be usable for theme development. Especially you may use the following tools
in writing a theme.

Liferay IDE in Eclipse
Ec lipse i s a multi-language software development environment comprising an
Integrated Development Environment (IDE) a nd an extensible plugin system. It is
written primarily in Java (and can be used to develop applications in Java) and also,
by the means of various plugins, other languages.

Liferay IDE i s an extension for the Eclipse platform that supports development
of plugin projects for the Liferay portal platform. It is available as a set of Eclipse
plugins, installable from an update site. The latest version supports fi ve types of
Liferay plugins—po rtlets, hooks, layout templates, themes, and EXT-style plugin.
 Liferay IDE requires the Eclipse Java EE developer package of versions Galileo or
Helios. For more details, please visit the Liferay IDE wiki page at http://www.
liferay.com/community/wiki/-/wiki/Main/Liferay+IDE. There are multiple
wiki pages available for helping to set up the IDE and create theme plugin in
the IDE.

Both Liferay Portal and Liferay Plugins SDK can be integrated in this Liferay IDE
running on Eclipse platform. You can include the runtime environment and set up
debugging tools among other features, as you are able to do for other J2EE and web
projects in Eclipse. You can also download and install Quantum DB and Subversion
plugins so that you can connect to Liferay database and check in/out code with
Subversion. This IDE can signifi cantly improve your Liferay engineering effi ciency.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[162]

The following screenshot shows that you can create a Liferay Plugin project in
Liferay IDE:

Aft er the theme plugin is created in the Liferay IDE, you can add all the necessary
fi les, including CSS, images, JavaScript, and Velocity templates to your theme
folders. Any code changes, whenever saved, will trigger the build process and the
modifi ed theme will be deployed in the runtime environment for verifi cation.

The following screenshot shows a theme plugin project in Liferay IDE:

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Chapter 5

[163]

ViewDesigner Dreamweaver plugin
Web designers would be more comfortable using web designer tools such as
Dreamweaver or FrontPage to design the themes rather than using text-based
editors. The current approach of putting the CSS changes in the _diffs folder, and
doing an ANT to create the theme Web application ARchive (WAR) fi l e is not what
web designers are used to.

ViewDesigner helps the web designers to easily create or modify Liferay Themes. It
is an open source project licensed under Common Development and Distribution
License (CDDL). Wh ile it currently supports only Windows, a Mac version will
be available shortly. For more details, please visit the wiki page at http://www.
liferay.com/web/guest/community/wiki/-/wiki/Main/Theme+Development+us
ing+the+ViewDesigner+Dreamweaver+Plugin.

W3school site
You can validate your webpage HTML markup, CSS fi les, and XHTML fi les at
http://www.w3schools.com/site/site_validate.asp. You can simply enter the
URL of your page or fi le, and click on Validate the page button. Your page or fi le
must be on a running application server or servlet container.

Firebug
Fire bug usu ally integrates with the Firefox browser. It is a powerful web
development tool. You can check the HTML markup and styles of your site in real
time with Firebug. Firebug is especially useful in debugging JavaScript code. While
some browser is murmuring that there is something wrong with your JavaScript,
Firebug will directly tell you that the defi nition of a particular function is missing.

Yslow
Yslo w is a Yahoo! web development tool. It is a Firefox add-on and integrates
with Firebug. Yslow can analyze your web pages and give suggestions
in performance improvement. You can read more about Yslow at
http://developer.yahoo.com/yslow/.

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Advanced Theme

[164]

Goo gle Chrome
Goog le Chrome has the following tools to help you test your website:

Web Inspector: It has an hierarchy view of the document object models and a
JavaScript console
Task Manager: It shows all the Google Chrome processes that are running
JavaScript Debugger

Summary
In this chapter, we have discussed some of the advanced aspects of theme
development in Liferay portal 6. In particular, we have learned that:

A theme developer can specify the value of the theme.parent property
to create a theme based on an existing theme
By adding color schemes to a theme, we get variations of a single theme
A theme designer can hide the portlet borders by changing a theme setting or
through confi guration in the portlet UI
There are different ways to embed instanceable and non-instanceable portlets
in a theme
It is easier to upgrade a theme based on a theme that is already running in
the target version
FreeMarker-template-based themes are now available in Liferay
To write a good theme, a designer should pay attention to coding
conventions, browser compatibility, and choice of development tools

In the next chapter, we will investigate the topic of portlet user interfaces.

•

•

•

•

•

•

•

•

•

•

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book

Where to buy this book
You can buy Liferay User Interface Development from the Packt Publishing website:
https://www.packtpub.com/liferay-user-interface-

development/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

community experience dist i l led

www.PacktPub.com

For More Information:
www.packtpub.com/liferay-user-interface-development/book

https://www.packtpub.com/liferay-user-interface-development/book
http://www.packtpub.com/Shippingpolicy

